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Simulation of ordered packed beds in chromatography
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Abstract

A computer simulation of chromatographic dispersion in an ordered packed bed of spheres is conducted utilizing a detailed fluid flow
profile provided by the Lattice Boltzmann technique. The ordered configurations of simple cubic, body-centered cubic, and face-centered
cubic are employed in these simulations. It is found that zone broadening is less for the fcc structure than the sc and bcc structures and less
than a random packed bed analyzed in a previous study in the low flow velocity region used for experimental chromatography. The factors
which contribute to the performance of the ordered pack beds are analyzed in detail and found to be dependent both on the nearest surface to
surface distance and on the distribution of velocities found in the various packing geometries. The pressure drops of the four configurations
are compared and contrasted with the pressure drop from monolithic columns.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Liquid chromatography has evolved in the sophistication
of column technology. The earliest columns used for liq-
uid chromatography contained large irregular particles. As
column technology matured, modern columns were man-
ufactured that contained spherical particles with diameters
typically ≤5�m and with narrow size distributions. Vari-
ations on the packed bed column[1,2] are now commonly
found in the liquid chromatography literature. These include
monolithic columns[3,4], packed bed liquid chromatogra-
phy in a microchip[5], micromachined packing structures on
a microchip[6], micromachined structures with membrane
filters on a microchip[7], and a host of other configurations.
With small chip-based formats for chromatography columns
being desirable in parallel separation systems utilized for
high throughput applications, the maximum column effi-
ciency is most desirable. This is especially important when
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complex separations in pharmaceutical and biotechnology
applications are to be accomplished in a minimum col-
umn length and in a minimum amount of time. Although
electrochromatography can deliver enhanced efficiencies,
as compared to pressure-driven flow, the problems with
electrophoresis and retention occurring simultaneously can
produce a very complex separation when charged species
are present. Therefore we seek alternative means for in-
creasing the chromatographic efficiency of pressure-driven
columns.

One possibility is to use templating methods[8,9] found in
nanotechnology to build periodic packing structures, i.e. or-
dered packing materials. This would lend itself to materials
that are uniformly porous and reproducible in terms of pres-
sure drop and performance. Recent experiments show this
is feasible in short segments[10], although full prototypes
may be difficult to construct experimentally. It would there-
fore be convenient to estimate the efficacy of ordered sphere
packing in chromatographic applications prior to undertak-
ing such a task in the laboratory. Using recently introduced
computer simulation techniques[11] based on calculating
the complete flow field with the Lattice Boltzmann (LB)
technique and then simulating the chromatographic disper-
sion process within this flow field allows such an estimation
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to be undertaken. We present the results of these simulations
here.

Specifically, we will compare the simulation of chromato-
graphic dispersion of ordered sphere packings in the sim-
ple cubic (sc), body-centered cubic (bcc), and face-centered
cubic (fcc) lattices. These results will be compared with a
random sphere packing calculated previously.

2. Background

A number of basic fluid mechanics studies[12–14] have
focused on understanding the flow field of ordered packed
beds of particles, mostly spheres. Experimental studies on
ordered packed beds[15] have found that the effective dif-
fusivity scales with fluid velocity approximately as the ve-
locity squared over a wide range of velocities.

In a packed bed of particles, the reduced or nondimen-
sional velocity,ν, also called the Péclet number, is calculated
as:

ν = 〈v〉d
D

(1)

where〈v〉 is the average velocity,d is the particle diameter
or relevant length scale, andD is the molecular diffusion
coefficient of the tracer in the fluid. The effective longi-
tudinal diffusivity, DL, which is a measure of dispersion
commonly used in engineering studies, is related to the
chromatographic plate heightH as[16]:

H = dσ2
L

dL
= 2DL

〈v〉 = Lσ
2

t̄2
(2)

whereσ2
L is the length-based variance of the zone distribu-

tion in the column,σ2 is the time-based variance of the zone
distribution measured by an ideal external detector,L is
the column length and̄t is the zone mean elution time. The
number of platesN is given asL/H . If the plate heightH
is nondimensionalized by dividing by the particle diameter
d to giveh, the nondimensional plate height, then:

DL

D
= hν

2
(3)

and

h = 2

ν
· DL
D

(4)

where Eqs. (3) and (4)relate the effective longitudinal
diffusivity to the nondimensional plate height.

Theoretical treatments of the effective longitudinal diffu-
sivity in periodic packings[17–19] have focused primarily
on two cases. The first and most important case is where
the principle axis of the periodic packing is parallel to the
flow axis. The second case is where the principle axis is not
parallel to the flow axis. For the first case, which is the case
studied in this paper, it has been shown[17–19] that the ef-
fective longitudinal diffusivity should scale as the velocity

squared, hence the plate heighth should scale linearly with
ν as dictated byEq. (4). This is very interesting from a chro-
matographic model perspective as it suggests that the van
Deemter model of chromatographic zone broadening:

h = A+ B

ν
+ Cν (5)

whereA, B, and C are constants, should be the correct
model for dispersion in ordered packing materials. The van
Deemter model is often shown to be inadequate in describ-
ing experimental zone broadening at higherν where there is
a curvature inh versusν data. Since mechanical dispersion
is absent in ordered packs[17–19], a mechanical disper-
sion term should not be present in dispersion models for or-
dered packing materials. Mechanical dispersion, also known
as eddy dispersion, is the broadening mechanism due to the
stochastic nature of the velocity distribution which arises
from the randomness of the packed bed geometry. The hy-
pothesis regarding whether the van Deemter model is the
correct model for the ordered packs will be tested below on
simulated chromatographic zones.

Research in the calculation and simulation of ordered
packing flow has taken primarily two directions. In a num-
ber of publications[20–23]the pressure drop and fluid drag
have been examined using LB simulation methods. These
studies found that a complex relationship between fluid drag
and the orientation of the pack exists, especially at higher
Reynolds number. Other studies[24–28]have examined the
scaling of dispersion with velocity. In these studies it has
been found that the effective longitudinal diffusivity varies
approximately as the velocity squared for ordered packs, as
predicted earlier by theory. In three cases[26–28] the LB
technique was used for the simulation of the ordered pack.
None of these studies examined the dispersion in sc, bcc, and
fcc geometries at the low Reynolds number flows needed to
model chromatography. In general, chromatography is car-
ried out [11] below a Reynolds number of 0.1. Hence, we
perform these calculations and look at dispersion in this re-
gion in an attempt to understand the chromatographic con-
sequences of ordered packing materials.

3. Simulations

3.1. Algorithms

The LB technique[29–33] is a relatively new method
which is capable of accurate calculation of flow fields in
the low to moderate Reynolds number region using parallel
computers. Parallel computing is essential in porous flow
simulations in order to perform the simulation in a rea-
sonable amount of time and to efficiently utilize the large
amounts of memory necessary for the fine numerical grid re-
quired to achieve accurate simulations. The use of this tech-
nique for calculating flow fields useful in chromatography
has been previously discussed[11] as have the algorithms
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Fig. 1. The four particle packs used in this study.

used to obtain dispersion via a stochastic simulation of con-
vection and diffusion in the flow field[11]. These are used
in this paper. As in the previous work, periodic boundary
conditions[11] (PBCs) are used in all three dimensions,
hence no wall effects are included. The packing material is
considered to be internally nonporous. Internal porosity ef-
fects can be added after the simulation data is accumulated
[11]. The four packing geometries are shown inFig. 1 for
the sc, bcc, fcc, and the random packing geometry analyzed
previously.

3.2. Simulation conditions

The simulation conditions are given inTable 1. Velocity
rescaling is utilized to cover the whole velocity range for
dispersion calculations from one LB simulation per packing

Table 1
The conditions used for simulation

Packing Grid size (x, y, z) Porosity

sc 128, 128, 128 0.476
bcc 208, 208, 208 0.320
fcc 256, 256, 256 0.259
Random 256, 256, 1024 0.360

configuration, as described previously[11]. All of the or-
dered packing flow fields used here were constructed using a
Reynolds number of 0.05. The maximum Reynolds number
for all of the simulations after rescaling is never over 0.5 for
the largest velocity. Hence, inertial effects are absent over
the range studied here. All ordered pack particle diameters
are 10�m and all column lengths are 1 cm.

4. Results

4.1. Zone efficiency

The results of simulation for the three ordered packs
are shown inFig. 2 in terms of the nondimensional plate
height, h, as a function of the nondimensional velocity
used in analytical chromatography. In addition, the re-
sults from a previous study[11] utilizing a 4000 sphere
random packing are shown for comparison. These results
suggest that zone dispersion is minimized in low velocity
regions by an fcc pack. A wider velocity region is shown
in Fig. 3 including velocities much larger than that found
in typical experimental chromatography. Here it is seen
that the random pack is more efficient (smallerh) at higher
velocities.

Mechanical dispersion is absent in the ordered packs
[17–19], as stated previously. At higher velocities where
mechanical dispersion becomes more dominant, it is known
[16] that the plate height increases less rapidly as compared
to the normal velocity range. The random pack zone effi-
ciency does not show as deleterious behavior with increas-
ing velocity as does the ordered packs because the increase
in h is limited by the onset of mechanical dispersion. In this
regard, mechanical dispersion is useful in limiting the loss
of efficiency at higher velocity, however, this higher velocity
range is never used in experimental chromatography.
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Fig. 2. The dimensionless plate height,h, plotted against the dimensionless
average velocityν or Ṕeclet number for the four geometries of particle
pack in the lower velocity range up toν = 40.
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Fig. 3. The dimensionless plate height,h, plotted against the dimensionless
average velocityν or Ṕeclet number for the four geometries of particle
pack over the full velocity range up toν = 500.

4.2. Model fitting

Using nonlinear least-squares analysis, as described pre-
viously for the analysis of simulation data[11], a number of
models were fit to the ordered pack data. These include the
van Deemter model given above inEq. (5), two variants of
the van Deemter model:

h = B

ν
+ Cν +Dν2 (6)

and

h = B

ν
+ Cν (7)

and a variation on the Knox model. The free-exponent Knox
model, which was used in the previous simulation paper
[11], has the functional form:

h = Aνn + B

ν
+ Cν (8)

The value ofn is usually set to 1/3 but it is allowed to be a
free parameter here.

The results of these analyses are shown inTable 2where
the results forν ≤ 250 are separated from the results forν ≤

Table 2
Percent relative standard deviation (%R.S.D.) of model fits from nonlinear
least-squares analysis

Packing ν range Eq. (5) Eq. (6) Eq. (7) Eq. (8)

sc 0≤ ν ≤ 250 17.6 1.50 4.52 4.80
sc 0≤ ν ≤ 500 150 2.21 11.2 12.0
bcc 0≤ ν ≤ 250 4.64 2.68 1.70 1.73
bcc 0≤ ν ≤ 500 45.0 3.33 5.46 5.76
fcc 0 ≤ ν ≤ 250 8.54 4.77 13.8 0.704
fcc 0 ≤ ν ≤ 500 42.7 7.60 20.3 39.3

The models are:Eq. (5), h = A+B/ν+Cν; Eq. (6), h = B/ν+Cν+Dν2;
Eq. (7), h = B/ν + Cν; and Eq. (8), h = Aνn + B/ν + Cν.

500. As can be seen from this table, the model equations for
the ordered packs forν ≤ 250 fit much better much better
than the models for the rangeν ≤ 500. This suggests that the
simulation technique, the convection–diffusion mechanics,
and/or the models may have inherent differences between
these ranges. A number of these aspects are addressed below.

As seen from the results inTable 2, Eq. (5), which includes
a velocity-independent term, generally offers the poorest fit
to the data over all of theν range. EvenEq. (7), which
is the van Deemter equation without the constant term,
i.e. a two-parameter model, fits the simulation data better
than does the van Deemter model contained inEq. (5), a
three-parameter model. For the bcc data in the lower veloc-
ity range (but still far too high for useful experimental sep-
arations), the simple two-parameter model ofEq. (7)gives
the best fit among all of the models.

The sc and bcc simulation data have a slight positive cur-
vature asν increases in contrast to the fcc simulation data
which have a slight negative curvature. Hence, reasonably
good fits over the entire range of data are had by the two
model equations,Eqs. (6) and (8), which can accommodate
curvature at higherν. In the sc and bcc cases, the quadratic
model,Eq. (6), fits generally better than doesEq. (8), which
contains a variable exponent. One interesting aspect of these
curve fits is that the exponent is almost exactly−1.00 for the
sc and bcc models whenEq. (8)is used over the full velocity
range. One interpretation of this is that the curve fitting is
suggesting that theA term inEq. (8)is not linearly indepen-
dent of theB term as they become identical whenn = −1
suggesting that there is no mechanical dispersion present in
the data. For the more limited velocity range, the exponent
n in Eq. (8) is −1.18 for the fcc simulation data. This sug-
gests that the mostly linear velocity dependence with a slight
quadratic behavior can quantitatively explain most of theh
versusν data and that the mechanism of zone broadening for
these ordered packs is diffusively controlled, as predicted
by theory[17–19]. However, the previous theoretical work
was not capable of predicting the extent of zone broaden-
ing, only its functional dependence, and this is one aspect
of why the simulation of these ordered packs is important.

At higherν solute tracers sample the flow field to a lesser
extent and the number of plates drops (the plate height in-
creases) because of smaller zone residence times, as indi-
cated byEq. (2). It is well known[34–36] that zone shape
will deviate from nearly Gaussian shape as the number of
plates is approximately≤100, although a predominately
Gaussian shape is still evident for zones with 25 plates[35].
Sinceh = L/Nd, the simulations will deviate from the re-
sults expected for long columns ash > 10–20. This may
partially explain the curvature at higher velocities exhibited
by the simulations.

4.3. Packing geometry

In order to explain the efficiency of the sc, bcc, and fcc
results, the normalized pore-size density function,P(δ), is
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Fig. 4. The surface to surface distance probability density function for
the four packing geometries. The independent variable is made nondi-
mensional by dividing by the sphere diameter. The data is filtered with a
10-point moving average window.

calculated and shown inFig. 4.P(δ)dδ is the probability that
a random point in the pore space lies at a distance betweenδ

andδ+dδ from the nearest point on the pore-solid interface
[37]. In practice, nearest-surface distances are evaluated at
each point in a fine three-dimensional lattice superimposed
on the pore space, andP(δ) is compiled from these distances.
The average distances and standard deviations are tabulated
in Table 3. Normalization is accomplished by dividing the
nearest-surface distance by the particle diameter rendering
the value dimensionless. For these cases, it is seen that the sc
configuration has the widest range of values. The maximum
distance value of approximately 1/3 is obtained within the
unit cell and this would lead to zones of higher dispersion
than the other configurations. In simple terms, the sc geom-
etry has regions where there are larger distances between
particles than the other geometries. This is also reflected in
the standard deviation for the sc geometry inTable 3.

The bcc and fcc configurations appear to have similar
surface to surface distances as viewed from the results of
Table 3and from the probability densities shown inFig. 4.
This is somewhat surprising as the packing density is higher
for fcc than bcc as indicated by the porosity values given
in Table 1. As shown inFig. 4, the fcc surface to surface
distance acts over a wider range of values than does the
bcc surface to surface distance. Since the chromatographic
efficiency varies significantly between the fcc and bcc ge-
ometries, some other controlling factor than the surface to

Table 3
The normalized nearest surface distances and standard deviations

Packing d̄N σN

sc 0.0960 0.0682
bcc 0.0467 0.0307
fcc 0.0417 0.0334
Random 0.0610 0.0459

surface distance must be affecting the zone broadening. Fur-
thermore, the results for the random pack geometry shows
that the distance between surfaces probability is higher on
average and wider than the bcc configuration yet the ran-
dom pack performs much better than the bcc pack in terms
of efficiency as a function of velocity.

4.4. Velocity analysis

The probability density of flow velocities is given inFig. 5
for the three ordered packs and the random packing. The
fcc flow profile gives a much more uniform probability of
finding flow velocities in the region 0≤ v/〈v〉 ≤ 1.5. As
a comparison measure, the probability density for the flow
velocity in an open cylindrical tube is uniform over all ve-
locities in the range 0≤ v/〈v〉 ≤ 1.5.

Negative velocities are nearly absent from the ordered
packs at the velocities of interest. This is a consequence
of the creeping flow low Reynolds number hydrodynamics
which produces an exceedingly small amount of recirculat-
ing flow behind the particles. Substantial recirculation would
probably cause broader zones because the flow dynamics
would promote a mixing effect.

Negative velocities are somewhat more prevalent in the
random pack, but still comprise only a minute fraction of the
velocity distribution. InFig. 5 a small number of negative
velocities have been truncated from the random pack prob-
ability density. Negative displacements have been observed
in real columns, as viewed from NMR-based experiments
[38], and these have been interpreted as having a stagnant
pool origin in porous particle chromatography. The simu-
lations here have no internal particle porosity, hence, the
origin of this for the random packed bed is probably some
form of off-axis laminar flow from the random nature of the
packing geometry.

As shown inFig. 5, the bcc and sc velocity probability
densities have a wider range than the fcc. In particular, the
sc and bcc have higher normalized velocities than the fcc.
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Fig. 5. The flow velocity probability density function for the four packing
geometries. The independent variable is made nondimensional by dividing
by the average velocity〈v〉.
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The random packing has a wider range of velocities than
the ordered packs, but fewer small velocities than the sc
and bcc packings. The velocity probability densities in the
low velocity region are inversely related to the efficiencies,
with sc > bcc > random pack > fcc. Hence, the efficiency
results given inFigs. 2 and 3can partially be explained by
the probability density of the flow velocities given inFig. 5.

4.5. Pressure drop

The LB technique can compute the pressure drop per unit
length, dp/dz, as part of the flow calculation. From the
pressure drop, other parameters such as the permeability
and the flow resistance are useful in providing a quantitative
description of flow in porous media.

The permeability of an isotropic porous medium is a
scaler,k, such that[39–41]:

q = − k
µ

· dp

dz
(9)

whereq is the superficial velocity[39–41] given by q =
ε〈v〉, µ is the fluid viscosity, andε is the porosity.Eq. (9)is
rearranged to:

k = − 〈v〉µε
dp/dz

(10)

noting that the negative sign is present because dp/dz is
negative. The permeability, which has units of area, can be
nondimensionalized into a flow resistance parameter,φ, by
[39,40]:

φ = εd2

k
(11)

The values fork andφ are given inTable 4for the three
ordered packs and the random pack. The numbers in this
table are scaled for a 5�m sphere diameter where needed
andµ is the viscosity of water which is approximately 0.01 P.

The numbers inTable 4 indicate that the permeability
is in the order fcc< bcc < random pack< sc for the
simulated packs. This is the same order as the porosities
given in Table 1for the simulated packs. For the the flow
resistance parameter,φ, the order is fcc > bcc > random pack
> sc which is the reverse order of the permeability numbers.

These numbers can be contrasted with experimental val-
ues from the literature. Typical experimental columns are
known[40] to haveφ values of 500–1000 and the fcc packing

Table 4
The pressure drop, dp/dz for 5�m spheres, the permeability, and the
flow resistance for the three ordered packs and the random pack

Pack Pressure drop
dp/dz (kg/m2/s2)

Permeabilityk
(m2)

Flow resistanceφ
(nondimensional)

sc 7.76× 107 6.14× 10−14 194
bcc 2.58× 108 1.24× 10−14 645
fcc 6.10× 108 4.25× 10−15 1520
Random 2.23× 107 1.61× 10−14 559

clearly is much higher than the bcc and random pack simula-
tions which fall in this range. In an experimental study[42]
which included both monolithic and packed bed columns,
the value ofφ for one reversed phase column with 5�m par-
ticles (called Capcellpack C18) was between 555 and 1000
depending on how the permeability was measured. Although
the definition of permeability in that study was different
than the one used here, the definition ofφ was identical to
Eq. (11), i.e.:

φ = − d2

µ〈v〉 · dp

dz
(12)

The experimental results are completely consistent with the
simulations noting that the sc configuration gives a very
small φ value. Monolithic columns in that study[42] with
pore size≈5�m gaveφ values between 62 and 95. This
suggests that the monolithic columns typically have about
one-fifth the flow resistance as do packed columns and that
an fcc column would be expected to have about three times
the flow resistance as a packed column.

4.6. Separation impedance

Bristow and Knox[43] developed a performance met-
ric which gives the ratio of efficiency to permeability;
they termed this nondimensional metric the “separation
impedance,”E. It is worthwhile to examine this parameter
and determine whether the fcc configuration offers better
performance than a typical random-packed bed would offer
when the increase in pressure drop is included as part of
the efficiency measure.

The separation impedanceE is defined as[43]:

E = H2

k
= h2φ (13)

so that high efficiency columns with low pressure drops
would tend to have smaller values ofE and less efficient
columns with higher pressure drops would give higher values
of E.

In the case of the fcc pack,E ≈ 550 whenhmin ≈ 0.6
at ν ≈ 5.0 as contrasted with the values quoted[42] for
the monolithic packings of 300–700 athmin. This is also in
contrast to the experimental value ofE ≈ 3500 for the C18
column data[42] used in that study. The simulated random
packing material data givesE ≈ 1550 which is less than half
that quoted for the experimental values. Again, the simulated
pack was constructed at the random packing limit of 36%
porosity, which is a tighter pack than that usually found
for experimental columns and the efficiency was calculated
in the absence of wall effects. In terms of the separation
impedanceE, the fcc pack is quite good due to the lower
h values. Since most applications of the fcc pack would be
found in very short columns, for example, in a chip format,
the increased flow resistance might not be a problem and the
efficiency gain might offset the increased pressure drop. A
very recent study[44] examined the flow through an ordered
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two-dimensional array of “pillars” (cylinders). It was found
that hmin = 0.65 under specific conditions withE values
as small as 200. The chip format was also suggested as a
possible method for implementation.

5. Discussion

We have presented results which suggest that an fcc
packed assembly of particles can deliver a significant en-
hancement in lower plate height than a randomly packed
bed of particles within the velocity range wherehmin oc-
curs. This enhancement is predicted in the absence of wall
effects. Wall effects would be expected to contribute a fair
amount of broadening to an ordered pack, for example, in
the chip configuration, where particles would be added in
layers to establish the packing in the ordered state. How-
ever, embedding the sides of the ordered packs could help
alleviate the wall effects, as has been suggested in previ-
ous simulations and as implemented in radial compression
columns many years ago.

One of the more difficult aspects of making ordered pack-
ing materials is to preserve the fcc order. As the results in
this paper suggest, bcc defects would tend to reduce the effi-
ciency of the pack. Making an sc pack may be most difficult
as the sc pack would tend to collapse to the lower energy
fcc structure. But crystal defects probably favor a local bcc
structure and this would have to be carefully controlled.

Finally, we note that the simulation of packing materials
frees the researcher from the tedious job of making ordered
packings to test them. This capability provides a test bed
for new materials in separation science and in this respect
chromatography has become another area where “computer
aided design” principles can be established.
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